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In its simplest form, a network is a collection of points,
or nodes, joined by lines, or edges.

As purely theoretical objects, networks have been the subject of
academic scrutiny since at least the 18th century. But they have
taken on a new practical role in recent years as a primary tool
in the study of complex systems—real-world systems of inter-
acting components, for which networks provide a simple but
tremendously useful representation.1 The internet, for example,
can be represented as a network of computers linked by data
connections. The World Wide Web is a network of information
stored on webpages and connected by hyperlinks. Social net-
works of friendships between individuals have received a lot
of recent attention, and other kinds of social networks, such as
those of professional or business contacts, are also attracting
their share of interest. Biological networks, such as the interre-
lated metabolic reactions that run the cell or the food web of
predator–prey relations in an ecosystem, are of interest in both
experimental and theoretical biology. And networks are in-
creasingly common in the study of epidemiology, computer
viruses, computer software, genetics, human transportation
and communication, human language, books, movies, music,
and many other things. But how do physicists enter the picture?

Physicists’ interest in networks is relatively recent.
Progress in the first 200 years of the field was mostly the work
of mathematicians and social scientists. Leonhard Euler is
often credited with the first rigorous result in graph theory
(the mathematical study of networks), with his solution of the
famous Königsberg bridge problem in 1765. Kenneth Appel
and Wolfgang Haken’s 1976 proof of the four-color theo-
rem—that four colors are sufficient to color any map in such
a way that any two adjacent regions are of different colors—
is perhaps the best known recent achievement of graph the-
ory. The empirical study of networks, meanwhile, has its
foundations in sociology, in which researchers have been
studying social networks since the 1930s.

Interest in networks has, however, seen its most spec-
tacular growth in the past 10 years, with much of the funda-
mental research in the area being conducted, perhaps sur-

prisingly, by physicists, whose methods turn out to be well
suited to the problems of the field. The approach taken by
physicists differs from those of mathematicians and sociolo-
gists in two important ways. First, unlike most mathematical
work, it is founded on and largely inspired by empirical stud-
ies of real-world networks such as the internet, friendship
networks, and biological networks. One reason for the sub-
ject’s rise in popularity has certainly been the increased avail-
ability of accurate and substantial network data sets. 

Second, unlike most sociologists, physicists have been
concerned largely with statistical properties of networks—
their overall shapes and statistical signatures—rather than
with properties of individual nodes or groups of nodes.
Whereas a sociologist might have asked, “Which nodes in
this network have the most connections?” a physicist might
ask, “What is the average number of connections a node
has?” or, “What is the distribution of the number of connec-
tions?” In asking those questions, physicists have stumbled
across a number of intriguing network properties, mostly un-
remarked in earlier work, that have inspired an impressive
array of new theories, techniques, algorithms, models, and
measures to describe and illuminate the function of net-
worked systems. Physicists are by no means the only con-
tributors to the outpouring of new work—mathematicians,
computer scientists, social scientists, biologists, and many
others have made fundamental contributions—but physicists
have played a central role, and physics journals have pub-
lished much of the foundational work in the field.

Figure 1 shows a representation of the internet, the
worldwide network of physical data connections between
computers. The nodes in the figure represent groups of com-
puters, and the edges represent data connections between
those groups. From looking at the network, it is evident that
although the pattern of connections is not a regular one, nei-
ther is it completely random. The network has clear structure,
including the prominent starlike formations at the center and
the more filamentary connections around the edges. The cen-
tral questions that have interested physicists in the study of
networks are how to appropriately quantify such patterns
and what they mean for the functioning of the system a net-
work represents. In this article I describe some of the ap-
proaches that have been developed to tackle those questions.

Degree distributions
The degree distribution is one of the most basic quantitative
properties of a network, yet it is a property that until recently
received comparatively little attention.
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The degree of a node in a network is the number of edges
connected to that node. In a social network of friendships, for
example, your degree would be the number of friends you
have. As figure 1 shows, many nodes in the internet have low
degree—just one or two connections—but a few (often called
hubs) have very high degree, as much as a thousand or more
in some cases.

Figure 2 shows a plot of the distribution of degrees on
the internet and reveals an interesting pattern: The distribu-
tion roughly follows a straight line on the logarithmic scales
used in the figure, meaning that the number P(k) of nodes
with degree k follows a power law P(k) ∝ k−α, an observation
first made in 1999 by Christos Faloutsos, Michalis Faloutsos,
and Petros Faloutsos,2 three brothers who are all professors
of computer science. The value of the exponent α for the in-
ternet is about 2.1.

When first discovered, the power-law distribution was a
surprise to many researchers. If edges in the network were
placed between nodes simply at random, the resulting de-
grees would follow a Poisson distribution, which is very dif-
ferent in shape from a power law, with most nodes having
degrees close to the mean value and no high-degree hubs at
all. The observation of a power-law distribution thus indi-
cates that the placement of edges in the network is, in a sense,
far from being random.

A number of other networks have also been shown to
have degree distributions that follow power laws; such net-
works are now often referred to as scale free. The earliest re-
port of a scale-free network that I’m aware of was given in
1965 by Derek de Solla Price, who studied citation networks,
in which the nodes represent learned papers and the edges
represent citation of one paper by another. Price showed that
the distribution of the number of citations a paper receives—
the degree distribution of the citation network—follows a
power law.3

Recent interest in degree distributions has been particu-
larly sparked by the work of Réka Albert, Hawoong Jeong,

and Albert-László Barabási (all at the University of Notre
Dame), who discovered power laws in a number of networks,
including the World Wide Web.4 Subsequent studies by var-
ious researchers have shown that many other networks,
though not always following the power-law pattern pre-
cisely, do tend to have skewed degree distributions with a 
lot of low-degree nodes and a small number of high-
degree hubs.5

Those findings turn out to be enormously important be-
cause many of the behaviors of networked systems are dom-
inated by their hubs. Though the hubs may be few in num-
ber—sometimes just a few percent of the total number of
nodes, depending on how you define them—they are
nonetheless the principal factor determining many aspects of
the behavior of the overall system. The next two sections ex-
plore examples of this phenomenon. 

Resilience to the removal of nodes
Suppose that some of the nodes in a network disappear for
some reason. Routers on the internet, for instance, fail all the
time: By some estimates, as many as 3% of routers worldwide
may be nonfunctional at any given time. Nonetheless, most
people remain able to reach the websites and e-mail servers
they want because the network offers—by design—more
than one route from most points to most others. Building on
that idea, Albert and colleagues asked what fraction of nodes
in a network would have to be removed before performance
was affected.6 They found that the answer depends crucially
on the network’s degree distribution.

The researchers considered two different schemes for re-
moving nodes. In the first, they removed nodes uniformly at
random, whereas in the second, they deliberately targeted
the highest-degree nodes for removal, on the assumption that
the second scheme would cause the network to fail faster. It
turns out, however, that on a network in which the nodes are
connected at random, there is little difference between the
two schemes. As discussed above, a random network has a

Figure 1. A network representation of
the internet. Each node represents an
autonomous system—a group of com-
puters under single administrative
control, such as the computers at a
university or a corporation. Edges
(connecting lines) represent direct
peering relations between au-
tonomous systems, which are a
rough indicator of where optical
fibers and other data connections
run. (Patents pending; © Lumeta
Corp 2007. All rights reserved.)
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Poisson degree distribution, with most nodes having degrees
close to the mean. In such a network, a process that removes
the highest-degree nodes is not much different from a process
that removes nodes at random: The degrees of the nodes re-
moved are about the same either way, and the network is
roughly equally resilient to both attacks.

But real-world networks are not random. Many have
highly skewed degree distributions, and for them the differ-
ence between random and targeted removal of nodes is strik-
ing. If you remove nodes purely at random, then most of
them have low degree, since most of the nodes in the network
have low degree. Thus the removed nodes are connected to
few others and have little effect when they are removed, as
shown in figure 3a. One of the more remarkable theoretical
results to emerge in recent years is that if nodes are removed
uniformly at random from a network with a power-law de-
gree distribution, then the network typically remains con-
nected and functional no matter how many nodes are re-
moved.7 Of course, the nodes that are removed are
themselves no longer connected to the network, but of the
nodes left behind, an extensive fraction remain connected.

Scale-free networks are thus extremely resilient against ran-
dom removal or failure of their nodes. The same is not true
of purely random networks.

For the case of targeted removal of the highest-degree
nodes, on the other hand, the reverse is true. The high-degree
nodes in a scale-free network are hubs with connections to
many other nodes, so the removal of just a few of them can
have a substantial effect, as shown in figure 3b. Analytic cal-
culations, for instance, indicate that no matter what the ex-
ponent of the power law, no more than 3% of nodes need to
be removed before the entire network becomes disconnected,
meaning that the average probability that there is a path con-
necting any two nodes vanishes.8

In the context of a communication network such as the
internet, that kind of fragility to a targeted attack could be a
bad thing: It’s certainly not desirable for critical infrastruc-
ture to be susceptible to failure of, or attacks on, just a few
central hubs. In other domains, however, fragility can be
good. One reason for the current high level of interest in
social networks is their importance in the spread of disease.
Diseases travel over networks of contact between individu-
als just as information travels over the internet, and nodes
can be “removed” from those networks by vaccination, as-
suming a vaccine is available for the disease in question. If
vaccination procedures could be targeted toward the highest-
degree nodes in a social network, it might in theory be pos-
sible to disconnect the network and thus prevent the spread
of disease while vaccinating only the tiniest fraction of the
population. This effect, in which a vaccination campaign
ends up protecting not only those vaccinated but also many
others as well, is known to epidemiologists as “herd immu-
nity.” In practice, unfortunately, it can be hard to exploit be-
cause of the difficulty of finding the high-degree individuals.

Spreading processes on networks
The spread of disease also provides the second example of
the importance of the degree distribution in the functioning
of networked systems. It is clear that the degrees of network
nodes must play some role in the spread of disease—or other
disease-like elements, such as rumors or fads, that pass over
networks of contacts between individuals. If no one in a net-
work has any connections, for instance, then diseases of
course cannot spread. If everyone has many connections,
diseases can spread quickly. One might guess that the speed
at which a disease spreads over a network would be deter-
mined by the mean degree of a node. Although that is the
right basic idea, it turns out to be wrong in detail: The cru-
cial parameter is not the mean degree but the mean squared
degree, as is shown by the following qualitative argument.

Consider a hub in a social network: a person having, say,
a hundred contacts. If that person gets sick with a certain dis-
ease, then he has a hundred times as many opportunities to
pass the disease on to others as a person with only one con-
tact. However, the person with a hundred contacts is also more
likely to get sick in the first place because he has a hundred
people to catch the disease from. Thus such a person is both a
hundred times more likely to get the disease and a hundred
times more likely to pass it on, and hence 10 000 times more
effective at spreading the disease than is the person with only
one contact. That is not a rigorous argument, but it can be made
rigorous, and the basic result is correct: It is not a node’s de-
gree but its degree squared that is the crucial parameter.

This result is again particularly important when applied
to scale-free networks. For a power-law degree distribution
with an exponent less than 3, the mean squared degree formally
diverges, and with it the rate of growth of a disease epidemic.
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Figure 2. The distribution of the degrees of nodes on 
the internet. As indicated, the distribution roughly follows
a straight line on a logarithmic plot; that is, it obeys a
power law.

Figure 3. (a) Random removal of nodes from a scale-free
network typically has little effect on the overall connectiv-
ity. (b) Targeting the highest-degree nodes can have a
devastating effect.



(In a network of finite size, it does not actually diverge, but
it does become very large.) Although some experts have de-
bated whether real contact networks have power-law degree
distributions, there is little doubt that the existence of net-
work hubs—or “superspreaders,” as they are sometimes
called in epidemiology—plays a big role in determining
whether and how fast diseases spread.9

The small-world effect
Perhaps the best known discovery in the study of networks
is the so-called small-world effect, the finding that most pairs
of people, no matter how distant they may be, are connected
by at least one and probably many short chains of acquain-
tances. The idea was explored mathematically by Ithiel Pool
and Manfred Kochen10 starting in the 1950s and more re-
cently by Duncan Watts and Steven Strogatz in a widely cited
1998 paper.11 But it is most strongly associated with the work
of Stanley Milgram, a social psychologist who at Harvard
University in the 1960s conducted a now-famous experiment
in which he asked participants to pass letters from acquain-
tance to acquaintance in an effort to get them to a chosen tar-
get person. Milgram found that the letters that reached the
target took an average of just six steps to get there from a
starting point chosen roughly at random,12 a result that has
passed into folklore under the name “the six degrees of sep-
aration” and has become the starting point for many after-
dinner conversations and parlor games.

The small-world effect is not confined to social networks
and seems to apply to almost all kinds of networks. There are
exceptions—networks with special regularities such as low-
dimensional networks or lattices, for example—but all the
networks mentioned in this article seem to be small worlds
in the sense discussed by Milgram. The average number of
degrees of separation varies from network to network—and
indeed the number six found by Milgram is only a rough es-
timate, given the limitations of his experimental method—
but the basic principle, that you can get from almost any node
to any other in just a small number of steps, is well docu-
mented in a wide array of systems.

Although many people—Milgram included, by his own
report—find the small-world effect surprising, it is not math-
ematically unexpected. The fundamental explanation is that
the number of people you can reach by taking a given num-
ber of steps in your social network increases exponentially
with the number of steps you take—a result known as the ex-
pander property—so the number of steps needed to reach
anyone in the world increases only logarithmically with
world population. Since the logarithm is a slowly increasing
function, the typical number of steps between any two peo-
ple in the world is relatively small, even though the popula-
tion numbers in the billions. The exponential behavior has
been confirmed empirically for a wide variety of networks
and appears well established.

However, another aspect of the small-world effect really
is surprising and was noted only recently by computer sci-
entist Jon Kleinberg. He pointed out that Milgram’s experi-
ment reveals not only the existence of short paths between
pairs of individuals in social networks but also that people
are good at finding those paths.13 He demonstrated how non-
trivial that statement is by using a simple network model to
show that in most cases short paths are difficult to find un-
less you know the entire network—which, of course, the peo-
ple in Milgram’s experiment didn’t. Kleinberg proposed a
possible mechanism to explain how people navigate around
social networks in practice: Although nobody knows the en-
tire network, he suggested that everyone has friends at vari-
ous distances and has an intuitive feeling for roughly how
close each of those friends is to any given target person. In
an experiment like Milgram’s, people would then pass the let-
ter in a series of steps that close in on the target by stages: A
random starting person in, say, New York aiming for a target
in Los Angeles gives the letter a long first step to a friend in
California. From there that friend takes a shorter step, pass-
ing it to an acquaintance in Los Angeles, and the process is
repeated with shorter and shorter steps until eventually the
letter reaches someone who knows the target personally. 

Kleinberg’s crucial discovery was that a process of this
type, simple though it sounds, only works if people have the
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Figure 4. Two networks with the same distribution of node degrees but different degree correlations. Network (a) is 
positively correlated, whereas (b) is negatively correlated. The nodes are color coded to emphasize their degrees (yellow
for low degree, red for high degree). The high-degree nodes clump together in network a but are more spread out in 
network b. A number of the hub-and-spoke formations characteristic of negatively correlated degrees—created when 
a high-degree node connects to a lot of low-degree ones—are visible around the edges of network b.



right distribution of friends at different distances. If they do
not, then either the letter stalls in the hands of an individual
with no friends closer to the target than himself, or the steps
it takes toward the target are all small, and a huge number of
them are needed to reach the destination. Thus the success of
Milgram’s experiment implies that the social network has a
special form. Although Kleinberg phrased his results in terms
of geographic distance, variations have been proposed that
employ various forms of social distance or that work in non-
Euclidean spaces.

In addition to their scientific interest, network naviga-
tion processes have practical applications too. One is in the
use of so-called spiders to perform customized searches of
the Web or other distributed databases. Traditional Web
searches are performed by crawling the Web on a huge scale
for information on every conceivable topic, indexing it all,
and then searching that index to locate webpages of interest.
Spiders take a more customized approach, performing a lim-
ited perusal of the network for information on just one topic.
For example, the simplest spider is a blind “hill climber” that
starts at a random point and follows links across the network,
jumping to pages of successively greater relevance to the
topic of interest (as measured, for instance, by the occurrence
of key words) until no further such steps are possible; then
the spider reports the last page found. That strategy works
because the spider, like the participants in the small-world
experiment, has a measure of how close it is to the target. It
only works, however, if pages on the Web are connected to
an appropriate distribution of relevant and less relevant
neighbors, so that the spider can take both long and short
steps when needed, just as Milgram’s letters did. Thus the
network must again have a special structure if rapid naviga-
tion is to be possible. Luckily, the Web does appear to have
that kind of structure, and efficient spiders have been created
that find uses in various kinds of specialized Web search.

Correlations and communities
Even after you allow for skewed degree distributions, the
connections in typical networks are, unsurprisingly, far from
random. One indication of deeper patterns in network struc-
ture can be found in the correlations between the degrees of
different nodes. You can look at adjacent nodes in a network
and ask whether, statistically speaking, their degrees are cor-
related. Are the high-degree nodes connected to other high-
degree nodes, for example, and low to low? Are the party
people hanging out with other party people, or are they
hanging out with hermits? Correlations can be quantified

using a joint probability distribution P(k1, k2) for the degrees
k1 and k2 of adjacent nodes, but such joint distributions are
hard to measure. A simpler approach, and one natural for
physicists, is to define a correlation coefficient r whose value,
positive or negative, quantifies the level of correlation:

where the averages are taken over all edges and σk
2 is the

variance of the node degree k. Values of r have been calcu-
lated for various networks and reveal an intriguing pattern:
Most social networks, it turns out, have positive correlations
between the degrees of adjacent nodes, whereas most
nonsocial ones, including technological and biological net-
works, have negative correlations. Although there are ex-
ceptions to the pattern, it seems to be quite a reliable rule of
thumb. However, its origins are, for the moment at least, not
entirely clear.

What is clear is that degree correlations have a strong ef-
fect on the structure of networks. Networks with positive cor-
relations tend to have a core–periphery structure: The nodes
with high degree are attracted to one another and so coagu-
late into a highly interconnected core surrounded by a pe-
riphery of lower-degree nodes, as shown in figure 4a. In neg-
atively correlated networks, by contrast, the high-degree
nodes tend to be scattered more broadly over the network, as
shown in figure 4b.

Those structural differences can have substantial effects
on the way a networked system behaves. A disease, for in-
stance, can persist more easily in a positively correlated net-
work by circulating in the dense core where there are many
opportunities for it to spread. On the other hand, the below-
average density of the periphery makes it harder for the dis-
ease to leave the core. In a negatively correlated network, the
same disease finds it harder to persist, but if it does persist,
then it typically spreads to the whole network.

Degree correlations are an example of a more general
phenomenon known as assortative mixing, in which the
probability of two nodes being connected by an edge de-
pends on some property of those nodes. The property in that
example was degree, which has a special importance because
it is itself a network measure, but network connections can
depend on all sorts of other properties too. In social networks,
for instance, the probability of a connection between two
individuals has been observed to depend on their ages,
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Figure 5. The social network
of a community of bottlenose
dolphins. The node shapes
and colors indicate the two
groups into which the network
split upon the departure of the
dolphin denoted by the trian-
gle. The two circled regions in-
dicate the division of the net-
work found by an automated
network analysis technique
that considered only the pat-
tern of connections.



incomes, races, and the languages they speak, among other
characteristics. On the internet, the probability of a connec-
tion depends on the geographical locations of nodes and
other node properties such as bandwidth.

These observations lead in turn to another recent point
of interest in the study of networks, the appearance of com-
munity structure. In networks in which like nodes associate
preferentially with one another, connected clusters of like
nodes tend to form—think of ethnic communities in cities, for
example. Many networks are found to have such groups or
communities within them, although it’s not always clear
what, if anything, is the underlying commonality among a
group’s members. Nonetheless, the discovery of groups
within a network can in many cases lead to a better under-
standing of the behavior of a system. 

Figure 5 shows an example from a collaboration I re-
cently undertook with marine biologist David Lusseau on a
study of bottlenose dolphins.14 Dolphins are highly social an-
imals that demonstrate attachments by performing “dances,”
whose observation can serve as raw data for the construction
of social networks like the one in the figure. By an appropri-
ate analysis of the network, we discovered two clear sub-
communities within it, indicated by the circled regions. In-
terestingly, during the course of Lusseau’s multiyear
observation of the community, one dolphin, denoted by the
triangle in the figure, disappeared. (It wasn’t dead, it turns
out; it just disappeared unexpectedly for a couple of years, to
who knows where, before returning equally unexpectedly.)
Upon its disappearance, the remaining dolphin population
split into two subpopulations, denoted by the circles and
squares, that then went their separate ways. Apparently, the
absent dolphin was the crucial glue holding together the
larger community, and with its departure the community
split. But notice that the communities discovered by the
analysis of the network before the split provide a good,
though not perfect, prediction of how the split would occur.
In a sense, the analysis quantitatively predicted the future be-
havior of the social system. (Some studies of human social
networks, and of nonsocial networks as well, have given sim-
ilar results.)

The development of methods for finding communities
within networks is a thriving sub-area of the field, with an
enormous number of different techniques under develop-
ment. Methods for understanding what the communities
mean after you find them are, by contrast, still quite primi-
tive, and much needs to be done if we are to gain real knowl-
edge from the output of our computer programs.

Further directions
There are many other interesting areas in the study of net-
works. A huge volume of theoretical work has been done on
network models; a growing field of experimental analysis
and data mining has produced both new techniques and a
host of interesting new results in the last few years; there are
studies of dynamical networks, which change over time, and
theories that describe them, and of dynamical systems on net-
works, such as synchronization phenomena or the dynamics
of metabolic reactions; and many interdisciplinary projects
are bringing ideas from statistics, machine learning, algo-
rithms, and other fields to bear on networked systems.

And yet we have large holes in our understanding, with
many fundamental questions still unanswered. The current
state of the field is perhaps analogous to quantum mechan-
ics before the discovery of the Schrödinger equation. Or
maybe it’s not even that good. For instance, we currently have
little idea of how to reliably estimate the properties of net-

works for which we have incomplete structural data. Unfor-
tunately, that includes many, perhaps most, of the networks
we’re interested in, which means that we have reliable meas-
urements of quantities of interest for few of the systems men-
tioned in this article. Moreover, it’s hard to know whether we
are even measuring the right things in many cases. I’ve de-
scribed a variety of network measures—degree distributions,
correlation coefficients, and so forth—and we have discov-
ered much by our study of those quantities. But there may
well be other equally important quantities we should be look-
ing at but haven’t thought of yet. In some fields of physics,
there are fundamental theories that state that if you measure
certain things—correlation functions, for example—then in
principle you know everything about the measured system,
at least up to some given level of approximation. But no such
theory exists yet for networks, nor even an idea of how to
develop one.

And even if we can solve those problems, we will have
only just begun to tackle the real questions at the heart of the
field. In the end the goal is to understand how networked
systems behave. Characterizing their structure is a good first
step, and studies of things like robustness and spreading
processes certainly address elements of the behavior ques-
tion. But, ultimately, the reason we study the internet is to
understand how it works, responds, and evolves. We study
social networks because we want to understand and perhaps
predict the behavior of societies. We study the World Wide
Web to understand how it stores information and how peo-
ple use it, with the hope perhaps of building better search en-
gines or better Web browsers. And although we have made
enormous progress toward those goals, big questions of fun-
damental importance are still begging for answers. Of course,
it has taken a century to arrive at our still-incomplete under-
standing of quantum mechanics, next to which the mere 
10 years or so that physicists have devoted to the study of
networks is the blink of an eye. What has been achieved in
that short time is extensive and invaluable. Still, it seems cer-
tain that crucial results are waiting to be discovered by ex-
perimenters and theorists alike, and there is plenty of room
for those with ideas to contribute.
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