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Abstract5

Bootstrapping has enormous potential in statistics education and practice, but there are subtle is-

sues and ways to go wrong. For example, the common combination of nonparametric bootstrap-

ping and bootstrap percentile confidence intervals is less accurate than usingt-intervals for small

samples, though more accurate for larger samples. My goals in this article are to provide a deeper

understanding of bootstrap methods—how they work, when they work or not, and which methods10

work better—and to highlight pedagogical issues.

Keywords: Teaching, bootstrap, sampling distribution, statistical concepts, standard error, bias,

confidence intervals
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ACCEPTED MANUSCRIPT

1 Introduction

Resampling methods, including permutation tests and the bootstrap, have enormous potential in15

statistics education and practice. They are beginning to make inroads in education.Cobb(2007)

was influential in arguing for the pedagogical value of permutation tests in particular. Undergrad-

uate textbooks that consistently use resampling as tools in their own right and to motivate classical

methods are beginning to appear, includingLock et al.(2013) for Introductory Statistics andChi-

hara and Hesterberg (2011) for Mathematical Statistics. Other texts (Tintle et al., 2014; Diez et al.,20

2014) use permutation or other randomization texts, though minimal bootstrapping. Experimental

evidence suggests that students learn better using these methods (Tintle et al., 2014).

The primary focus of this article is the bootstrap, where there are a variety of competing meth-

ods and issues that are subtler and less well-known than for permutation tests. I hope to provide

a better understanding of the key ideas behind the bootstrap, and the merits of different methods.25

Without this understanding, things can go wrong. For example, people may prefer the bootstrap for

small samples, to avoid relying on the central limit theorem. However, the common bootstrap per-

centile confidence interval is poor for small samples; it is like at-interval computed usingz instead

of t quantiles and estimatings with a divisor ofn instead ofn− 1. Conversely, it is more accurate

than t-intervals for larger samples. Some other bootstrap intervals have the same small-sample30

issues.

The bootstrap is used for estimating standard errors and bias, obtaining confidence intervals,

and sometimes for tests. The focus here is on relatively simple bootstrap methods and their ped-

agogical application, particularly for Stat 101 (introductory statistics with an emphasis on data

analysis) and Mathematical Statistics (a first course in statistical theory, using math and simula-35

tion), though the methods are useful elsewhere in the curriculum. For more background on the

bootstrap and a broader array of applications, see (Efron and Tibshirani, 1993; Davison and Hink-

ley, 1997). Hesterberg(2014) is a longer version of this article.Hesterberg et al.(2005) is an

introduction to the bootstrap and permutation tests for Stat 101 students.

Section1 introduces the bootstrap for estimators andt statistics, and discusses its pedagogical40

and practical value. Section2 develops the idea behind the bootstrap, and implications thereof.

Section3 visually explores when the bootstrap works or not, and compares the effects of two
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ACCEPTED MANUSCRIPT

sources of variation—the original sample, and bootstrap sampling. Section4 surveys selected

confidence intervals and their pedagogical and practical merits. Section5 covers pedagogical and

practical issues in regression. Section6 contains a summary and discussion.45

Examples and figures are created inR (R Core Team, 2014), using theresamplepackage (Hes-

terberg,2015). Scripts are in an online supplement.

1.1 Verizon Example

The following example is used throughout this article. Verizon was anIncumbent Local Exchange

Carrier (ILEC), responsible for maintaining land-line phone service in certain areas. Verizon also50

sold long-distance service, as did a number of competitors, termedCompetitive Local Exchange

Carriers (CLEC). When something went wrong, Verizon was responsible for repairs, and was

supposed to make repairs as quickly for CLEC long-distance customers as for their own. The New

York Public Utilities Commission (PUC) monitored fairness by comparing repair times for Verizon

and different CLECs, for different classes of repairs and time periods. In each case a hypothesis test55

was performed at the 1% significance level, to determine whether repairs for a CLEC’s customers

were significantly slower than for Verizon’s customers. There were hundreds of such tests. If

substantially more than 1% of the tests were significant, then Verizon would pay large penalties.

These tests were performed usingt tests; Verizon proposed using permutation tests instead.

n mean sd
ILEC 1664 8.41 16.5
CLEC 23 16.69 19.5

Table 1: Verizon repair times.

The data for one combination of CLEC, class of service, and period are shown in Table1 and60

Figure1. Both samples are positively skewed. The mean CLEC repair time is nearly double that

for ILEC, suggesting discrimination, though the difference could be just chance.

The one-sided permutation testP-value is 0.0171, well above the 1% cutoff mandated by the

PUC. In comparison, the pooledt testP-value is 0.0045, about four times too small. The permu-

tation test gives the correct answer, with nearly exact Type 1 error rates; this was recognized as65

far back as (Fisher, 1936), who usedt-tests as an approximation because perturbation tests were
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ACCEPTED MANUSCRIPT

computationally infeasible then. Thet-test is inaccurate because it is sensitive to skewness when

the sample sizes differ. Usingt tests for 10000 Verizon fairness tests would result in about 400

false positive results instead of the expected 100, resulting in large monetary penalties. Similarly,

t confidence intervals are inaccurate. We’ll see how inaccurate, and explore alternatives, using the70

bootstrap.

1.2 One-Sample Bootstrap

Let θ̂ be a statistic calculated from a sample ofn i.i.d. observations (time series and other dependent

data are beyond the scope of this article). In the ordinarynonparametric bootstrapwe drawn

observations with replacement from the original data to create abootstrap sampleor resample,75

and calculate the statistiĉθ∗ for this sample (we use∗ to denote a bootstrap quantity). We repeat

that many times, sayr = 10000 (we use 10000 unless noted otherwise). The bootstrap statistics

comprise thebootstrap distribution. Figure2 shows bootstrap distributions ofθ̂ = x̄ for the ILEC

and CLEC datasets. We use each distribution to estimate certain things about the corresponding

sampling distribution, including:80

standard error: the bootstrap standard erroris the sample standard deviation of the bootstrap

distribution,sb =

√
1/(r − 1)

∑r
i=1(θ̂

∗
i − θ̂

∗)2.

confidence intervals: a quick-and-dirty interval, thebootstrap percentile interval, is the range of

the middle 95% of the bootstrap distribution,

bias: the bootstrap bias estimateis θ̂∗ − θ̂.85

Summary statistics of the bootstrap distributions are:

Observed SE Mean Bias

CLEC 16.50913 3.961816 16.53088 0.0217463

ILEC 8.41161 0.357599 8.40411 -0.0075032

The CLEC SE is larger primarily due to the smaller sample size and secondly to the larger sample90

sd in the original data. Bootstrap percentile intervals are (7.73,9.13) for ILEC and (10.1,25.4) for

CLEC. For comparison,s/
√

n = 0.36 for ILEC and 4.07 for CLEC, and standardt intervals are

(7.71,9.12) and (8.1,24.9). The distribution appears approximately normal for the ILEC sample
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ACCEPTED MANUSCRIPT

but not for the smaller CLEC sample, suggesting thatt intervals might be reasonable for the ILEC

mean but not the CLEC mean.95

The bootstrap separates the concept of a standard error—the standard deviation of a sampling

distribution—from the common formulas/
√

n for estimating the SE of a sample mean. This sep-

aration should help students understand the concept. Based on extensive experience interviewing

job candidates, I attest that a better way to teach about SEs is needed—too many do not understand

SEs, and even confuse SEs in other contexts with the formula for the SE of a sample mean.100

1.3 Two-Sample Bootstrap

For a two-sample bootstrap, we independently draw bootstrap samples with replacement from each

sample, and compute a statistic that compares the samples. For the Verizon data, we draw a sample

of size 1664 from the ILEC data and 23 from the CLEC data, and compute the difference in means

x̄1 − x̄2. The bootstrap distribution (see online supplement) is centered at the observed statistic;105

it is used for confidence intervals and standard errors. It is skewed like the CLEC distribution;

t intervals would not be appropriate.

For comparison, the permutation test pools the data and splits the pooled data into two groups

using sampling without replacement, before taking the difference in means. The sampling is con-

sistent with the null hypothesis of no difference between groups, and the distribution is centered at110

zero.

1.4 Bootstrapt Distribution

It is not surprising thatt procedures are inaccurate for skewed data with a sample of size 23, or for

the difference when one sample is that small. More surprising is how badt confidence intervals

are for the larger sample, size 1664. To see this, we bootstrapt statistics.115

Above we resampledunivariatedistributions ofestimatorslike x̄ or x̄1 − x̄2. Here we look

at joint distributions, for example the joint distribution of̄X and s, and distributions of statistics

that depend on botĥθ andθ. To estimate the sampling distribution ofθ̂ − θ, we use the bootstrap

distribution ofθ̂∗ − θ̂. The bootstrap bias estimate isE(θ̂∗ − θ̂), an estimate ofE(θ̂ − θ). To estimate
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the sampling distribution of at statistic120

t =
θ̂ − θ
SE

(1)

where SE is a standard error calculated from the original sample, we use the bootstrap distribution

of

t∗ =
θ̂∗ − θ̂
SE∗

. (2)

Figure3 shows the joint distribution of̄X∗ ands∗/
√

n, and the distribution oft∗, for the ILEC125

data withn = 1664. Standard theory says that for normal populationsX̄ andsare independent, and

the t statistict = (X̄ − μ)/(s/
√

n) has at distribution. However, for positively skewed populations

X̄ andsare positively correlated, the correlation doesn’t get smaller with largen, and thet statistic

does not have at distribution. WhileX̄∗ is positively skewed with mean ˉx, t is twice as skewed in

the opposite direction because the denominators/
√

n is more affected by large observations than130

the numerator̄X is. And t has a negative median, so its quantiles end up 3x as asymmetrical to the

left.

The amount of skewness apparent in the bootstrapt distribution matters. The bootstrap distri-

bution is a sampling distribution, not raw data; the Central Limit Theorem has already had its one

chance to work. At this point, any deviations indicate errors in procedures that assume normal or135

t sampling distributions. 3.6% of the bootstrap distribution is below−tα/2,n−1, and 1.7% is above

tα/2,n−1 (based onr = 106 samples,α = 0.05). Even withn = 1664, thet statistic isn’t even close

to having at distribution, based on what matters—tail probabilities.

In my experience giving talks and courses, typically over half of the audience indicates there is

no problem with the skewness apparent in plots like Figure3. They are used to looking at normal140

quantile plots of data, not of sampling distributions. A common flaw in statistical practice is to fail

to judge how accurate standard CLT-based methods are for specific data; the bootstrapt distribution

provides an effective way to do so.

1.5 Pedagogical and Practical Value

The bootstrap process reinforces the central role that sampling from a population plays in statis-145

tics. Sampling variability is visible, and it is natural to measure the variability of the bootstrap
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ACCEPTED MANUSCRIPT

distribution using methods students learned for summarizing data, such as the standard deviation.

Students can see if the bootstrap distribution is bell-shaped. It is natural to use the middle 95% of

the distribution as a 95% confidence interval.

The bootstrap makes the abstract concrete—abstract concepts like sampling distributions, stan-150

dard errors, bias, central limit theorem, and confidence intervals are visible in plots of the bootstrap

distribution.

The bootstrap works the same way with a wide variety of statistics. This makes it easy for

students to work with a variety of statistics, and focus on ideas rather than formulas. This also

lets us do better statistics, because we can work with statistics that are appropriate rather than just155

those that are easy—e.g. a median or trimmed mean instead of a mean.

Students can obtain confidence intervals by working directly with the statistic of interest, rather

than using at statistic. You could skip talking aboutt statistics andt intervals, or defer that until

later. At that point you may introduce another quick-and-dirty confidence interval, thet interval

with bootstrap standard error, θ̂± tα/2sb. In Mathematical Statistics, students can use the bootstrap160

to help understand joint distributions of estimators likeX̄ ands, and to understand the distribution

of t statistics, and computebootstrap t confidence intervals, see Section4.3.

The bootstrap can also reinforce the understanding of formula methods, and provide a way for

students to check their work. Students may know the formulas/
√

n without understanding what

it really is; but they can compare it tosb or to an eyeball estimate of standard deviation from a165

histogram of the bootstrap distribution, and see that it measures how the sample mean varies due

to random sampling.

Resampling is also important in practice. It often provides the only practical way to do

inference—when it is too difficult to derive formulas, or the data are stored in a way that make

calculating the formulas impractical; a longer version of this article (Hesterberg, 2014) contains ex-170

amples from Google, from my work and others. In other cases resampling provides better accuracy

than formula methods. For one simple example, consider confidence intervals for the variance of

the CLEC population.s2 = 380.4, the bootstrap SE fors2 is 267, and the 95% percentile interval is

(59,932). The classical normal-based interval is ((n−1)s2/χ2
22,0.975, (n−1)s2/χ2

22,0.025) = (228,762).

It assumes that (n−1)s2/σ2 ∼ χ2(n−1), but for long-tailed distributions the actual variance ofs2 is175
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ACCEPTED MANUSCRIPT

far greater than for normal distributions. I recommend not teaching theχ2 intervals for a variance,

or F-based intervals for the ratio of variances, because they are not useful in practice, with no

robustness against non-normality. Their coverage does not improve asn→ ∞.

2 The Idea Behind Bootstrapping

Inferential statistics is based on sampling distributions. In theory, to get these we:180

• draw (all or infinitely many) samples from thepopulation, and

• compute the statistic of interest for each sample (such as the mean, median, etc.).

The distribution of the statistics is thesampling distribution, see Figure4.

However, in practice we cannot draw arbitrarily many samples from the population; we have

only one sample. The bootstrap idea is to draw samples from an estimate of the population, in lieu185

of the population:

• draw samples froman estimate ofthe population, and

• compute the statistic of interest for each sample.

The distribution of the statistics is thebootstrap distribution, see Figure5.

2.1 Plug-in Principle190

The bootstrap is based on theplug-in principle—if something is unknown, we substitute an esti-

mate for it. This principle is very familiar to statisticians. For example, the sd of the sample mean

isσ/
√

n; whenσ is unknown we substitute an estimates, the sample standard deviation. With the

bootstrap we go one step farther—instead of plugging in an estimate for a single parameter, we

plug in an estimate for the whole populationF.195

This raises the question of what to substitute forF. Possibilities include the nonparamet-

ric, parametric, and smoothed bootstrap. The primary focus of this article is the nonparametric

bootstrap, the most common procedure, which consists of drawing samples from the empirical

distributionF̂n (with probability 1/n on each observation), i.e. drawing samples with replacement

from the data.200

In the parametric bootstrap, we assume a model (e.g. a gamma distribution with unknown shape
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ACCEPTED MANUSCRIPT

and scale), estimate parameters for that model, then draw bootstrap samples from the model with

those estimated parameters.

The smoothed bootstrap is a compromise between parametric and nonparametric approaches;

if we believe the population is continuous, we may sample from a continuousF̂, say a kernel205

density estimate (Silverman and Young, 1987; Hall et al., 1989; Hesterberg, 2014). Smoothing is

not common; it is rarely needed, and does not generalize well to multivariate and factor data.

2.2 Fundamental Bootstrap Principle

The fundamental bootstrap principle is that this substitution usually works—that we can plug in an

estimate forF, then sample, and the resulting bootstrap distribution provides useful information210

about the sampling distribution.

The bootstrap distribution is in fact a sampling distribution. The bootstrap usesa sampling

distribution (from an estimatêF) to estimate things aboutthesampling distribution (fromF).

There are some things to watch out for, ways the bootstrap distribution differs from the sam-

pling distribution. We discuss some of these below, but one is important enough to mention imme-215

diately.

2.3 Inference, Not Better Estimates

The bootstrap distribution is centered at the observed statistic, not the population parameter, e.g.

at x̄, notμ.

This has two profound implications. First, it means that we do not use the mean of the bootstrap220

statistics as a replacement for the original estimate1. For example, we cannot use the bootstrap to

improve on ˉx; no matter how many bootstrap samples we take, they are centered at ˉx, notμ. Instead

we use the bootstrap to tell how accurate the original estimate is. In this regard the bootstrap is

like formula methods that use the data twice—once to compute an estimate, and again to compute

1There are exceptions, where the bootstrap is used to obtain better estimates, for example in random forests. These
are typically where a bootstrap-like procedure is used to work around a flaw in the basic procedure. For example,
consider estimatingE(Y|X = x) where the true relationship is smooth, using only a step function with relatively few
steps. By taking bootstrap samples and applying the step function estimation procedure to each, the step boundaries
vary between samples; by averaging across samples the few large steps are replaced by many smaller ones, giving a
smoother estimate. This isbagging(bootstrap aggregating).
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ACCEPTED MANUSCRIPT

a standard error for the estimate. The bootstrap just uses a different approach to estimating the225

standard error.

If the bootstrap distribution is not centered at the observed statistic—if there is bias—we could

subtract the estimated bias to produce a bias-adjusted estimate,θ̂− ˆBias= 2θ̂− θ̂∗. We generally do

not do this—bias estimates can have high variability (Efron and Tibshirani, 1993). Bias is another

reason not to use the average of bootstrapestimateŝθ∗ = θ̂ + ˆBias to replace the original estimate230

θ̂—thataddsthe bias estimate to the original statistic, doubling any bias.

The second implication is that we do not use the CDF or quantiles of the bootstrap distribution

of θ̂∗ to estimate the CDF or quantiles of the sampling distribution of an estimatorθ̂. Instead, we

bootstrap to estimate things like the standard deviation, the expected value ofθ̂ − θ, and the CDF

and quantiles of̂θ − θ or (θ̂ − θ)/SE.235

2.4 Key Idea vs. Implementation Details

What people may think of as the key bootstrap idea—drawing samples with replacement from the

data—is just a pair of implementation details. The first is substituting the empirical distribution

for the population; alternatives include smoothed or parametric distributions. The second is using

random sampling. Here too there are alternatives, including analytical methods (for example,240

whenθ̂ = x̄ we may calculate the mean and variance of the bootstrap distribution analytically) and

exhaustive calculations. There arenn possible bootstrap samples from a fixed sample of sizen,
(
2n−1

n

)
if order doesn’t matter, or even fewer in some cases like binary data; ifn is small we could

evaluate all of these. We call this anexhaustive bootstrapor theoretical bootstrap. But more often

exhaustive methods are infeasible, so we draw say 10000 random samples instead; we call this the245

Monte Carlo sampling implementation.

2.5 How to Sample

Normally we should draw bootstrap samples the same way the sample was drawn in real life, e.g.

simple random sampling or stratified sampling. Pedagogically, this reinforces the role that random

sampling plays in statistics.250
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One exception to that rule is tocondition on the observed information. For example, when

comparing samples of sizen1 andn2, we fix those numbers, even if the original sampling pro-

cess could have produced different counts. (This is the conditionality principle in statistics, the

idea of conditioning on ancillary statistics.) Conditioning also avoids some technical problems,

particularly in regression, see Section5.255

We can also modify the sampling to answerwhat-ifquestions. For example, we could bootstrap

with and without stratification and compare the resulting standard errors, to investigate the value

of stratification. We could also draw samples of a different size; say we are planning a large study

and obtain an initial dataset of size 100, we can draw bootstrap samples of size 2000 to estimate

how large standard errors would be with that sample size. Conversely, this also answers a common260

question about bootstrapping—why we sample with the same size as the original data—because

by doing so the standard errors reflect the actual data, rather than a hypothetical larger or smaller

data set.

3 Variation in Bootstrap Distributions

We claimed above that the bootstrap distribution usually provides useful information about the265

sampling distribution. We elaborate on that now with a series of visual examples, one where things

generally work well and three with problems. We address two questions:

• How accurate is the theoretical (exhaustive) bootstrap?

• How accurately does the Monte Carlo implementation approximate the theoretical boot-

strap?270

Both reflect random variation:

• The original sample is chosen randomly from the population.

• Bootstrap resamples are chosen randomly from the original sample.

3.1 Sample Mean, Large Sample Size

Figure6 shows a population, the sampling distribution for the mean withn = 50, four samples and275

the corresponding bootstrap distributions. Each bootstrap distribution is centered at the statistic ˉx
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from the corresponding sample rather than at the population meanμ. The spreads and shapes of

the bootstrap distributions vary a bit but not a lot.

These observations inform what the bootstrap distributions may be used for. The bootstrap

does not provide a better estimate of the population parameter, because the bootstrap means are280

centered at ˉx, notμ. Similarly, quantiles of the bootstrap distributions are not useful for estimating

quantiles of the sampling distribution. Instead, the bootstrap distributions are useful for estimating

the spread and shape of the sampling distribution.

The right column shows additional bootstrap distributions for the first sample, withr = 1000

or r = 104 resamples. Using more resamples reduces random Monte Carlo variation, but does not285

fundamentally change the bootstrap distribution—it still has the same approximate center, spread,

and shape.

The Monte Carlo variation is much smaller than the variation due to different original samples.

For many uses, such as quick-and-dirty estimation of standard errors or approximate confidence

intervals, r = 1000 resamples is adequate. However, there is noticeable variability (including290

important but less-noticeable variability in the tails) so when accuracy matters,r = 104 or more

samples should be used.

3.2 Sample Mean: Small Sample Size

Figure7 is similar to Figure6, but for a smaller sample size,n = 9 (and a different population).

As before, the bootstrap distributions are centered at the corresponding sample means, but now295

the spreads and shapes of the bootstrap distributions vary substantially, because the spreads and

shapes of the samples vary substantially. As a result, bootstrap confidence interval widths vary

substantially (this is also true of standardt confidence intervals). As before, the Monte Carlo

variation is small and may be reduced with more resamples.

While not apparent in the pictures, bootstrap distributions tend to be too narrow on average,300

by a factor of
√

(n− 1)/n for the sample mean, and approximately that for many other statistics.

This goes back to the plug-in principle; the empirical distribution has variance ˆσ2 = VarF̂n
(X) =

1/n
∑

(xi − x̄)2, and the theoretical bootstrap standard error is the standard deviation of a mean ofn

independent observations from that distribution,sb = σ̂/
√

n. That is smaller than the usual formula
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s/
√

n by a factor of
√

(n− 1)/n. For example, the CLECsb = 3.96 is smaller thans/
√

n = 4.07.305

The combination of thisnarrowness biasand variability in spread makes some bootstrap con-

fidence intervals under-cover, see Section4. Classicalt intervals compensate using two fudge

factors—a factor of
√

n/(n− 1) in computing the sample standard deviations, and usingt rather

than normal quantiles. Bootstrap percentile intervals lack these factors, so tend to be too narrow

and under-cover in small samples.t intervals with bootstrap SE include thet/z factor, but suf-310

fer narrowness bias. Some other bootstrap procedures do better. For Stat 101 I suggest warning

students about the issue; for higher courses you may discuss remedies (Hesterberg, 2004, 2014).

In two-sample or stratified sampling situations, the narrowness bias depends on the individual

sample or strata sizes. This can result in severe bias. For example, the U.K. Department of Work

and Pensions, wanted to bootstrap a survey of welfare cheating. They used a stratified sampling315

procedure that resulted in two subjects in each stratum—so an uncorrected bootstrap standard error

would be too small by a factor of
√

(ni − 1)/ni =
√

1/2.

3.3 Sample Median

Now turn to Figure8, where the statistic is the sample median. Here the bootstrap distributions are

poor approximations of the sampling distribution. The sampling distribution is continuous, but the320

bootstrap distributions are discrete—for oddn the bootstrap sample median is always one of the

original observations—and with wildly varying shapes.

The ordinary bootstrap tends not to work well for statistics such as the median or other quantiles

in small samples, that depend heavily on a small number of observations out of a larger sample.

The bootstrap depends on the sample accurately reflecting what matters about the population, and325

those few observations cannot do that. The right column shows thesmoothed bootstrap; it is better,

though is still poor for this smalln.

In spite of the inaccurate shape and spread of the bootstrap distributions, the bootstrap per-

centile interval for the median is not bad (Efron, 1982). For oddn, percentile interval endpoints

fall on one of the observed values. Exact interval endpoints also fall on one of the observed values330

(order statistics), and for a 95% interval those are typically the same or adjacent order statistics as

the percentile interval.
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3.4 Mean-Variance Relationship

In many applications, the spread or shape of the sampling distribution depends on the parameter

of interest. For example, the binomial distribution spread and shape depend onp. Similarly, for an335

exponential distribution, the standard deviation of the sampling distribution of ˉx is proportional to

μ.

This mean-variance relationship is reflected in bootstrap distributions. Figure9 shows samples

and bootstrap distributions for an exponential population. There is a strong dependence between

x̄ and the corresponding bootstrap SE. This relationship has important implications for confidence340

intervals; procedures that ignore the relationship are inaccurate. We discuss this more in Sec-

tion 4.5.

There are other applications where sampling distributions depend strongly on the parameter; for

example sampling distributions for chi-squared statistics depend on the non-centrality parameter.

Use caution when bootstrapping such applications; the bootstrap distribution may be very different345

from the sampling distribution.

Here there is a bright spot. The right column of Figure9 shows the sampling distribution

and bootstrap distributions of thet statistic, equations (1–2). These distributions are much less

sensitive to the original sample. We use these bootstrapt distributions below to construct accurate

confidence intervals.350

3.5 Summary of Visual Lessons

The bootstrap distribution reflects the original sample. If the sample is narrower than the popu-

lation, the bootstrap distribution is narrower than the sampling distribution. Typically for large

samples the data represent the population well; for small samples they may not.Bootstrapping

does not overcome the weakness of small samples as a basis for inference.Indeed, for the very355

smallest samples, it may be better to make additional assumptions such as a parametric family.

Looking ahead, two things matter for accurate inferences:

• how close the bootstrap distribution is to the sampling distribution (the bootstrapt has an

advantage, see Figure9);
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• how well the procedures allow for variation in samples, e.g. by using fudge factors.360

Another visual lesson is that random sampling using only 1000 resamples causes more random

variation in the bootstrap distributions. Let’s consider this issue more carefully.

3.6 How Many Bootstrap Samples

I suggested above using 1000 bootstrap samples for rough approximations, or 104 or more for better

accuracy. This is about Monte Carlo accuracy—how well the usual Monte Carlo implementation365

of the bootstrap approximates the theoretical bootstrap distribution. A bootstrap distribution based

on r random samples corresponds to drawingr observations with replacement from the theoretical

bootstrap distribution.

Brad Efron, inventor of the bootstrap, suggested in 1993 thatr = 200, or even as few asr = 25,

suffices for estimating standard errors and thatr = 1000 is enough for confidence intervals (Efron370

and Tibshirani,1993).

I argue that more resamples are appropriate. First, computers are faster now. Second, those

criteria were developed using arguments that combine variation due to the original random sample

with the extra variation from the Monte Carlo implementation. I prefer to treat the data as given

and look just at the variability due to the implementation. Two people analyzing the same data375

should not get substantially different answers due to Monte Carlo variation.

Quantify accuracy by formulas or bootstrapping: We can quantify the Monte Carlo variation

in two ways—using formulas, or by bootstrapping. For example, letG be the cdf of a theoretical

bootstrap distribution and̂G the Monte Carlo approximation, then the variance ofĜ(x) is G(x)(1−

G(x))/r, which we estimate usinĝG(x)(1− Ĝ(x))/r.380

Similarly, a bootstrap bias estimate is a mean ofr random values minus aconstant,̂θ∗ − θ̂; the

Monte Carlo standard error for the bias issb/
√

r wheresb is the sample standard deviation of the

bootstrap distribution.

We can also bootstrap the bootstrap distribution! Ther bootstrap statistics are an i.i.d. sample

from the exhaustive bootstrap distribution; we can bootstrap that sample. For example, the 95%385

percentile confidence interval for the CLEC data is (10.09,25.41); these are 2.5% and 97.5% quan-
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tiles of the bootstrap distribution;r = 104. To estimate the accuracy of those quantiles, we draw

resamples of sizer from the bootstrap distribution and compute the quantiles for each resample.

The resulting SEs for the quantile estimates are 0.066 and 0.141.

Need r ≥ 15000 to be within 10%: Next we determine how larger should be for accurate390

results, beginning with two-sided tests with size 5%. Suppose the true one-sidedP-value is 0.025,

and we want the estimatedP-value to be within 10% of that, between 0.0225 and 0.0275. To have a

95% probability of being that close requires that 1.96
√

0.025∙ 0.975/r < 0.025/10, orr ≥ 14982.

Similar results hold for a bootstrap percentile or bootstrapt confidence interval. Ifq is the true

2.5% quantile of the theoretical bootstrap distribution (forθ̂∗ or t∗, respectively), for the estimated395

Ĝ(q) to fall between 2.25% and 2.75% with 95% probability requiresr ≥ 14982.

For at interval with bootstrap SE,r should be large enough that variation insb has a similar

small effect on coverage. For largen and an approximately normal bootstrap distribution, about

r ≥ 5000 suffices (Hesterberg, 2014).

Rounding up, we needr ≥ 15000 to have 95% probability of being within 10%, for permutation400

tests and percentile and bootstrapt confidence intervals, andr ≥ 5000 for thet with bootstrap SE.

While students may not need this level of accuracy, it is good to get in the habit of doing accurate

simulations. Hence I recommend 104 for routine use. In practice, if the results withr = 104 are

borderline, then we can increaser to reduce the Monte Carlo error. We want decisions to depend

on the data, not random variation in the Monte Carlo implementation. We usedr = 500,000 in the405

Verizon project.

Students can do multiple runs with differentr, to see how the results vary. They should de-

velop some intuition into how results vary with differentr; this intuition is valuable not only for

resampling, but for general understanding of how estimates vary for differentn.

4 Confidence Intervals410

In this section I describe a number of confidence intervals, and compare their pedagogical value

and accuracy.
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A hypothesis test or confidence interval isfirst-order accurateif the one-sided actual rejection

probabilities or one-sided non-coverage probabilities differ from the nominal values byO(n−1/2).

It is second-order accurateif the differences areO(n−1).415

4.1 Statistics 101—Percentile, andt with Bootstrap SE

For Stat 101 I would stick with the two quick-and-dirty intervals mentioned earlier: the bootstrap

percentile interval, and thet interval with bootstrap standard errorθ̂ ± tα/2sb. If using software

that provides it, you may also use the bootstrapt interval described below. The percentile interval

will be more intuitive for students. Thet with bootstrap standard error helps them learn formula420

methods. Students can compute both and compare.

Neither interval is very accurate. They are only first-order accurate, and are poor in small

samples—they tend to be too narrow. The bootstrap standard error is too small, by a factor
√

(n− 1)/n so thet interval with bootstrap SE is too narrow by that factor; this is the narrowness

bias discussed in Section3.2.425

The percentile interval suffers the same narrowness and more—for symmetric data it is like

usingzα/2σ̂/
√

n in place oftα/2,n−1s/
√

n. Random variability in how skewed the data are also adds

variability to the endpoints, further reducing coverage. These effects areO(n−1) (effect on coverage

probability) or smaller, so they become negligible fairly quickly asn increases. But they matter

for smalln, see Figure10. The interval also hasO(n−1/2) errors—because it only makes a partial430

skewness correction, see Section4.5.

In practice, thet with bootstrap standard error offers no advantage over a standardt procedure

for the sample mean. Its advantages are pedagogical, and that it can be used for statistics that lack

easy standard error formulas.

The percentile interval is not a good alternative to standardt intervals for the mean of small435

samples—while it handles skewed populations better, it is less accurate for small samples because

it is too narrow. For exponential populations the percentile interval is less accurate than the stan-

dardt interval forn ≤ 34.

In Stat 101 it may be best to avoid the small-sample problems by using examples with larger

n. Alternately, some software corrects for the small-sample problems; for example, the resample440
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package (Hesterberg, 2015) includes theexpanded percentile interval(Hesterberg, 1999, 2014) a

percentile interval with fudge factors motivated by standardt intervals.

4.2 Reverse Bootstrap Percentile Interval

Thereverse bootstrap percentile interval(called “basic bootstrap confidence interval” in (Davison

and Hinkley,1997)) is a common interval, with pedagogical value in teaching manipulations like445

those shown just below. But it is poor in practice; I include it here to help faculty and students

understand why and to discourage its use.

It is based on the distribution of̂δ = θ̂ − θ We estimate the CDF of̂δ using the bootstrap

distribution of δ̂∗ = θ̂∗ − θ̂. Let qα be theα quantile of the bootstrap distribution ofδ̂∗, i.e. α =

P(δ̂∗ ≤ qα). Then

α/2 = P(θ̂∗ − θ̂ < qα/2)

≈ P(θ̂ − θ < qα/2) = P(θ̂ − qα/2 < θ)

Similarly for the other tail. The resulting confidence interval is

(θ̂ − q1−α/2, θ̂ − qα/2) = (2θ̂ − Q1−α/2,2θ̂ − Qα/2) (3)

whereQα is the quantile of the bootstrap distribution ofθ̂∗.450

This interval is the mirror image of the bootstrap percentile interval; it reaches as far aboveθ̂

as the bootstrap percentile interval reaches below. For example, for the CLEC mean, the sample

mean is 16.5, the percentile interval is (10.1,25.4) = 16.5+ (−6.4,8.9), and the reverse percentile

interval is 16.5+ (−8.9,6.4) = 2 ∙ 16.5− (25.4,10.1) = (7.6,22.9).

Reversing works well for a pure translation family, but those are rare in practice. More common455

are cases like Figure9, where the spread of the bootstrap distribution depends on the statistic.

Then a good interval needs to be asymmetric in the same direction as the data, see Section4.5.

The reverse percentile interval is asymmetrical in the wrong direction! Its coverage accuracy in

Figure10is terrible. It also suffers from the same small-sample narrowness issues as the percentile

interval.460

Hall (1992) calls the bootstrap percentile interval “the wrong pivot, backwards”; the reverse
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percentile interval uses that same wrong pivot in reverse.δ̂ is the wrong pivot because it isn’t even

close topivotal—a pivotal statistic is one whose distribution is independent of the parameter. A

t statistic is closer to pivotal; this leads us to the next interval.

4.3 Bootstrapt Interval465

We saw in Section1.4 that thet statistic does not have at distribution when the population is

skewed. The bootstrapt confidence interval is based on thet statistic, but estimates quantiles of

the actual distribution using the data rather than a table.Efron and Tibshirani(1993) call this

“Confidence intervals based on bootstrap tables”—using the bootstrap to generate the right table

for an individual dataset, rather than using a table from a book. This has the best coverage accuracy470

of all intervals in Figure10.

We assume that the distribution oft∗ is approximately the same as the distribution oft (equa-

tions1 and2); the right column of Figure9 suggests that this assumption holds, i.e. the statistic is

close to pivotal. Letqα be theα quantile of the bootstrapt distribution, then

α/2 = P

(
θ̂∗ − θ̂
SE∗

< qα/2

)

≈ P

(
θ̂ − θ
SE

< qα/2

)

= P(θ̂ − qα/2SE< θ)

Similarly for the other tail. The resulting confidence interval is

(θ̂ − q1−α/2SE, θ̂ − qα/2SE). (4)

Note that endpoints are reversed: we subtract an upper quantile of the bootstrapt distribution to get

the lower endpoint of the interval, and the converse (this reversal is easy to overlook with standard475

t intervals due to symmetry).

4.4 Confidence Interval Accuracy

Next we compare the accuracy of the different confidence intervals:

t = t: ordinaryt interval;

B = tBoot: t interval with bootstrap standard error;480
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p = perc: bootstrap percentile interval;

r = reverse: reverse percentile interval;

T = bootT: bootstrapt.

For a 95% interval, a perfectly accurate interval misses the parameter 2.5% of the time on each

side. Figure10 shows actual non-coverage probabilities for normal and exponential populations,485

respectively. The figure is based on extremely accurate simulations, see the appendix.

Normal population: The percentile interval (“p” on the plot) does poorly. It corresponds to

usingz instead oft, using a divisor ofn instead ofn− 1 when calculating SE, and doing a partial

correction for skewness; since the sample skewness is random this adds variability. For normal

data the skewness correction doesn’t help, and the other three things kill it for small samples. The490

reverse percentile interval is similarly poor, with exactly the same coverage for normal populations.

The t interval with bootstrap SE (“B”) does somewhat better, though still under-covers. The

t interval (“t”) and bootstrapt (“T”) interval do very well. That is not surprising for thet interval,

which is optimized for this population, but the bootstrapt does extremely well, even for very small

samples.495

Exponential population: This is a harder problem. All intervals badly under-cover on the

right—the intervals are too short on the right side—and over-cover (by smaller amounts) on the

left. (Over-covering on one side does not compensate for under-covering on the other—instead,

having both endpoints too low gives an even more biased picture about where the parameter may

be than having just one endpoint too low.)500

The bootstrapt interval (“T”) does best, by a substantial margin. It is second-order accurate,

and gives coverage within 10% forn ≥ 101. The other intervals are all poor. The reverse percentile

interval (“r”) is the worst. The percentile interval (“p”) is poor for small samples, but better than

the ordinaryt (“t”) for n ≥ 35. To reach 10% accuracy requiresn ≥ 2383 for percentile, 4815

for ordinary t, 5063 fort with bootstrap standard errors and over 8000 for the reverse percentile505

method.
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4.5 Skewness and Mean-Variance Relationship

Take another look at Figure9, for the sample mean from a skewed population. Note how the

spread of the bootstrap distribution for ˉx∗ depends on the statistic ˉx. To obtain accurate confidence

intervals we need to allow for such a relationship (and Mathematical Statistics students should be510

aware of this).

For positively-skewed populations, when ˉx < μ the sample standard deviation and bootstrap

SE also tend to be small, so a confidence interval needs to reach many (small) SE’s to the right

to avoid missingμ too often. Conversely, when ˉx > μ, s andsb tend to be large, so a confidence

interval doesn’t need to reach many (large) SE’s to the left to reachμ.515

In fact, a good interval, like the bootstrapt interval, is even more asymmetrical than a bootstrap

percentile interval—about three times as asymmetrical in the case of a 95% intervals for a mean

(Hesterberg, 2014). The bootstrapt explicitly estimates how many standard errors to go in each

direction. This table shows how far the endpoints for thet, percentile, reverse percentile, and

bootstrapt intervals are above and below the sample mean of the Verizon ILEC data:520

t reverse percentile bootstrapT

2.5% −0.701 −0.718 −0.683 −0.646

97.5% 0.701 0.683 0.718 0.762

-ratio 1 0.951 1.050 1.180

The bootstrap percentile interval is asymmetrical in the right direction, but falls short; the reverse

percentile interval goes the wrong way.

For right-skewed data, you may be surprised that good confidence intervals are 3x as asymmet-

rical as the bootstrap percentile interval; You may even be inclined to “downweight the outliers”,525

and use an interval that reaches farther left; the reverse percentile interval does so, with catas-

trophic effect. Instead, think of it this way: the data show that the population is skewed, take that

as given; we may have observed toofew observationsfrom the long right tail, so the confidence

interval needs to reach far to the right to protect against that—many (small) SE’s to the right.
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4.6 Confidence Interval Details530

There are different ways to compute quantiles common in statistical practice. For intervals based

on quantiles of the bootstrap distribution, I recommend letting thekth largest value in the bootstrap

distribution be the (k + 1)/r quantile, and interpolating for other quantiles. In R (R Core Team,

2014) this isquantile(x, type=6). Other definitions give narrower intervals, and exacerbate

the problem of intervals being too short.535

Bootstrapt intervals require standard errors—for the original sample, and each bootstrap sam-

ple. When formula SE’s are not available, we can use the bootstrap to obtain these SE’s (Efron and

Tibshirani,1993), using aniterated bootstrap, in which a set of second-level bootstrap samples

is drawn from each top-level bootstrap sample to estimate the SE for that bootstrap sample. This

requiresr + rr 2 resamples ifr2 second level samples are drawn from each top-level sample. The540

computational cost has been an impediment, but should be less so in the future as computers make

use of multiple processors.

While the simulation results here are for the sample mean, the bootstrapt is second-order accu-

rate and the others are first-order accurate under quite general conditions, see (Efron and Tibshirani,

1993; Davison and Hinkley, 1997). Efron and Tibshirani(1993) note that the bootstrapt is partic-545

ularly suited to location statistics like the sample mean, median, trimmed mean, or percentiles, but

performs poorly for a correlation coefficient; they obtain a modified version by using a bootstrapt

for a transformed version of the statisticψ = h(θ), whereh is avariance-stabilizing transformation

(so that Var(̂ψ) does not depend onψ) estimated using a creative use of the bootstrap. The same

method improves the reverse percentile interval (Davison and Hinkley, 1997).550

4.7 Bootstrap Hypothesis Testing

There are two broad approaches to bootstrap hypothesis testing. One approach is to invert a confi-

dence interval—rejectH0 if the corresponding interval excludesθ0.

Another approach is to sample in a way that is consistent withH0, then calculate aP-value as

a tail probability. For example, we could perform a two-sample bootstrap test by pooling the data555

and drawing bootstrap samples of sizen1 andn2 with replacement from the pooled data. However,
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this bootstrap test is not as accurate as the permutation test. Suppose, for example, that the data

contain three outliers. The permutation test tells how common the observed statistic is, given the

three outliers. With a pooled bootstrap the number of outliers would vary. The permutation test

conditions on the data, treating only group assignment as random.560

Another example, for a one-sample mean, is to translate the data, subtracting ˉx−μ0 from eachxi

so the translated mean isμ0, then resample from the translated data. This is equivalent to inverting

a reverse percentile confidence interval, with corresponding inaccuracy for skewed data. It can

also yield impossible data, like negative values for data that must be positive.

Translation modifies a distribution by modifying the values. A better way to modify a distribu-565

tion is to keep the same values, but change the probabilities on those values, using bootstrap tilting

(Efron, 1981; Davison and Hinkley, 1997); empirical likelihood (Owen, 2001) is related. Tilting

preserves mean-variance relationships. I believe tilting has great pedagogical potential for Math-

ematical Statistics; it nicely connects parametric and nonparametric statistics, can help students

understand the relationship between parameters and sampling distributions, and better understand570

confidence intervals. See the online supplement for an example. But suitable software for educa-

tional use is not currently available.

Neither approach is as accurate as permutation tests, in situations where permutation tests can

be used. The actual one-sided rejection probabilities when inverting confidence intervals corre-

spond to Figure10. In contrast, permutation tests are nearly exact.575

5 Regression

There are two ways that bootstrapping in regression is particularly useful pedagogically. The first

is to help students understand the variability of regression predictions by a graphical bootstrap.

For example, in Figure11 we bootstrap regression lines; those lines help students understand the

variability of slope and intercept coefficients, and of predictions at each value ofx. The more we580

extrapolate in either direction, the more variable the predictions become. A bootstrap percentile

confidence interval forE(Y|x) is the range of the middle 95% of they values for regression lines at

anyx; these intervals are wider for more extremex.
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The second is to help students understand the difference between confidence and prediction

intervals. In the left panel we see that the variability of individual observations is much larger585

than the variability of the regression lines; confidence intervals based on the lines would capture

only a small fraction of observations. To capture observations, prediction intervals must be much

wider, and should approximate the quantiles of the residual distribution, because they are primarily

intervals for individual observations—no CLT applies for prediction intervals.

The bootstrap estimates the performance of the model that was actually fit to the data, regard-590

less of whether that is a poor model. In the right panel of Figure11, a linear approximation was

used even though the relationship is quadratic; the bootstrap measures the variability of the linear

approximation, and estimates the bias of (a linear approximation to the data) as an estimate of (a

linear approximation to the population). The bootstrap finds no bias—for anyx, the bootstrap lines

are centered vertically around the original fit.595

5.1 Resample Observations or Conditional Distributions

Two common procedures when bootstrapping regression are:

• bootstrap observations, and

• bootstrap residuals.

The latter is a special case of a more general rule:600

• resampley from its estimated conditional distribution givenx.

In bootstrapping observations, we sample with replacement from the observations, keeping

y and correspondingx’s together. In any bootstrap sample some observations may be repeated

multiple times, and others not included.

In bootstrapping residuals, we fit a regression model, compute predicted values ˆyi and residuals605

ei = yi − ŷi, then create a bootstrap sample using the samex values as in the original data, but

with y obtained by adding the predictions and random residuals,y∗i = ŷi + e∗i , wheree∗i are sampled

randomly with replacement from the original residuals.

Bootstrapping residuals corresponds to a designed experiment where thex’s are fixed and only

y is random, and bootstrapping observations to randomly sampled data where bothx andy are610

sampled from a joint distribution. By the principle of sampling the way the data were drawn, we
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would bootstrap observations if thex’s were random. Alternately, we can follow the precedent set

by the common formula approach, where formulas are derived assuming thex’s are fixed, and in

practice we use these even when thex’s are random. In doing so we condition on the observed

x’s, and hence on the observed information (in regression the information depends on the spread615

of the x’s—the wider the spread, the lessβ̂ varies). Similarly, in bootstrapping, we may resample

the residuals, conditioning on the observedx’s.

Fixing the x’s can make a big difference in practice; bootstrapping observations can be dan-

gerous. For example, suppose one of thex’s is a factor variable with a rare level, say only 5

observations. When resampling observations, about 67 out of 10000 samples omit those five ob-620

servations entirely; then the regression software cannot estimate a coefficient for that level. Worse,

many samples will include just one or two observations from that level; then the software produces

estimates with high variance, with no error message to flag the problem. Similar problems occur in

models with interactions, or with continuous variables when some linear combination
∑

cj xj has

most of its variation in a small number of observations. We avoid these problems by bootstrapping625

residuals.

Bootstrapping residuals is a special case of a more general rule, to sampleY from its estimated

conditional distribution givenX. For example, when bootstrapping logistic regression, we fit the

model, and calculate predicted values ˆyi = Ê(Y|X = xi) = P̂(Y = 1|X = xi). To generate a

bootstrap sample, we keep the samex’s, and lety∗i = 1 with probability ŷi, otherwisey∗i = 0.630

This is an example of a parametric bootstrap. We use this at Google in a complicated multi-stage

logistic regression procedure.

The conditional distribution idea also helps in linear regression where there is heteroskedas-

ticity or lack of fit; we sample residuals from observations with similar residual distributions, e.g.

from observations with similar predictions (for heteroskedasticity) orx’s (for lack of fit).635

6 Discussion

We first summarize some points from above, then discuss books and software.

Bootstrapping offers a number of pedagogical benefits. The process of bootstrapping mimics
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the central role that sampling plays in statistics. Students can use familiar tools like histograms to

visualize sampling distributions and standard errors. They may understand that a SE is the standard640

deviation of a sampling distribution. Students can work directly with estimates of interest, like

sample means, instead oft statistics, and use the same basic procedure for many different statistics

without new formulas. Robust statistics like medians and trimmed means can be used throughout

the course. Students can focus on the ideas, not formulas. When learning formulas, they can

compare formula and bootstrap answers. Graphical bootstrapping for regression demonstrates the645

variation in regression predictions, and the difference between confidence and prediction intervals.

Understanding the key idea behind the bootstrap—sampling from an estimate of the population—

is important in order to use the bootstrap appropriately, and helps to understand when it may not

work well, or which methods may work better. When using Monte Carlo sampling, enough sam-

ples should be used to obtain accurate answers—10,000 is good for routine use. Students can gain650

insight into sampling variation by trying different numbers.

Bootstrap distributions and percentile confidence intervals tend to be too narrow, particularly

for small samples. As a result, percentile intervals are less accurate than commont intervals for

small samples, though more accurate for larger samples. Most accurate are bootstrapt intervals.

The reason relates to the fundamental idea of the bootstrap—to replace the population by an esti-655

mate of the population, then use the resulting bootstrap distribution as an estimate of the sampling

distribution. This substitution is more accurate for a pivotal statistic—and thet statistic is close to

pivotal.

For skewed data, confidence intervals should reach longer in the direction of the skewness;

the bootstrapt does this well, the percentile makes about 1/3 of that correction,t intervals ignore660

skewness, and reverse percentile intervals go the wrong way.

We generally sample the way the data were produced (e.g. simple random or stratified sam-

pling), except to condition on observed information. For regression, that means to fix thex values,

i.e. to resample residuals rather than observations. This avoids problems in practice.

To reach the full potential of bootstrapping in practice and education, we need better software665

and instructional materials. Software such ashttps://www.stat.auckland.ac.nz/˜wild/

VIT or http://lock5stat.com/statkey has a place in education, to help students visualize
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the sampling process, but is not suitable when students go into real jobs. InR (R Core Team,

2014), students can write bootstrap loops from scratch, but this is difficult for Stat 101 students.

For that matter it may be difficult for higher level students, but it is worth putting in that effort.670

Modern statistics requires extensive computing skills including resampling and simulation (ASA,

2014), and developing those skills should start early. The Mosaic package (Pruim et al., 2015) can

make this easier, and the package contains one vignette for resampling and another with resources

including supplements using Mosaic for (Lock et al., 2013; Tintle et al., 2014). In practice, imple-

menting some of the more accurate bootstrap methods is difficult (especially those not described675

here), and people should use a package rather than attempt this themselves. For R, theboot pack-

age (Canty and Ripley, 2014) is powerful but difficult to use. Theresample package (Hesterberg,

2015) is easier but limited in scope. Theboot andresample packages are designed for prac-

tice, not for pedagogy, they hide details and do not provide dynamic simulations demonstrating

resampling.boot offers tilting.resample offers theexpanded percentile interval, with improved680

small-sample coverage.

Books need improvement. Too few textbooks use the bootstrap, and those that do could stand

improvement.Chihara and Hesterberg(2011) andLock et al.(2013) use permutation/randomization

tests and bootstrapping to introduce inference, and later to introduce formula methods. The treat-

ments are largely pedagogically appropriate and valuable. However, neither recognizes that boot-685

strap percentile intervals are too narrow for small samples and inappropriately recommend that

method for small samples.Lock et al. (2013) also recommend testing a single mean using the

translation technique discussed in Section4.7; while that is useful pedagogically to demonstrate

some manipulations, it should be replaced with better alternatives like the bootstrapt. Diez et al.

(2014) use the bootstrap for only one application, at interval with bootstrap SE for confidence690

intervals for a standard deviation. Otherwise they avoid the bootstrap, due to poor small-sample

coverage of percentile intervals.

These imperfections shouldn’t stop teachers from using the bootstrap now. The techniques can

help students understand statistical concepts related to sampling variability.

I hope that this article spurs progress—that teachers better understand what the bootstrap can695

do and use it to help students understand statistical concepts, that people make more effective
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use of bootstrap techniques appropriate to the application (not the percentile interval for small

samples!), that textbook authors recommend better techniques, and that better software for practice

and pedagogy results.

Simulation Details700

Figure 10 is based on 104 samples (except 5∙ 103 for n ≥ 6000), with r = 104 resamples for

bootstrap intervals, using a variance reduction technique based on conditioning. For normal data,

X̄ andV = (X1 − X̄, . . . ,Xn − X̄) are independent, and each interval is translation-invariant (the

intervals forV andV + x̄ differ by x̄). Let U be the upper endpoint of an interval, andP(U < μ) =

EV(E(U < μ|V)). The inner expected value is a normal probability:E(U < μ|V) = P(X̄ + U(V) <705

μ|V) = P(X̄ < μ − U(V)|V). This technique reduces the variance by factors ranging from 9.6 (for

n = 5) to over 500 (forn = 160).

Similarly, for the exponential distribution,̄X andV = (X1/X̄, . . . ,Xn/X̄) are independent, and

we use the same conditioning technique. This reduces the Monte Carlo variance by factors ranging

from 8.9 (for n = 5) to over 5000 (forn = 8000). The resulting accuracy is as good as using 89000710

or more samples without conditioning. For example, standard errors for one-sided coverage for

n = 8000 are 0.000030 or smaller.

Acknowledgments: I thank David Diez, Jo Hardin, Beth Chance, Fabian Gallusser, Laura Chi-

hara, Nicholas Horton, Hal Varian, Brad Efron, five referees and two editors for helpful comments.

References715

ASA (2014).Curriculum Guidelines for Undergraduate Programs in Statistical Science. Alexan-

dria, VA: American Statistical Association.

Canty, A. and B. Ripley (2014).boot: Bootstrap Functions. R package.

Chihara, L. and T. Hesterberg (2011).Mathematical Statistics with Resampling and R. Wiley.

28
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

] 
at

 1
8:

56
 1

2 
Se

pt
em

be
r 

20
15

 



ACCEPTED MANUSCRIPT

Cobb, G. (2007). The introductory statistics course: A Ptolemaic curriculum.Technology Innova-720

tions in Statistics Education 1(1), Article 1.

Davison, A. and D. Hinkley (1997).Bootstrap Methods and their Applications. Cambridge Uni-

versity Press.
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Figure 1: Normal quantile plot of ILEC and CLEC repair times.
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Figure 2: Bootstrap distributions for Verizon data.Bootstrap distributions for ˉx, for the ILEC and
CLEC datasets.
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Figure 3: CLT with n=1664.Left: scatterplot of bootstrap means and standard errors, ILEC data.
Right: bootstrapt distribution.
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Figure 4: Ideal world.Sampling distributions are obtained by drawing repeated samples from the
population, computing the statistic of interest for each, and collecting (an infinite number of) those
statistics as the sampling distribution.
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Figure 5: Bootstrap world.The bootstrap distribution is obtained by drawing repeated samples
from an estimate of the population, computing the statistic of interest for each, and collecting those
statistics. The distribution is centered at the observed statistic ( ˉx), not the parameter (μ).
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Figure 6: Bootstrap distribution for the mean, n= 50. The left column shows the population and
four samples. The middle column shows the sampling distribution forX̄, and bootstrap distribu-
tions of X̄∗ for each sample, withr = 104. The right column shows more bootstrap distributions
for the first sample, three withr = 1000 and two withr = 104.
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Figure 7: Bootstrap distributions for the mean, n= 9. The left column shows the population and
four samples. The middle column shows the sampling distribution forX̄, and bootstrap distribu-
tions of X̄∗ for each sample, withr = 104. The right column shows more bootstrap distributions
for the first sample, three withr = 1000 and two withr = 104.
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Figure 8: Bootstrap distributions for the median, n= 15. The left column shows the population
and four samples. The middle column shows the sampling distribution, and bootstrap distributions
for each sample, withr = 104. The right column shows smoothed bootstrap distributions, with
kernel sds/

√
n andr = 104.
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Figure 9: Bootstrap distributions for the mean, n= 50, exponential population.The left column
shows the population and five samples. (These samples are selected from a larger set of random
samples, to have means spread across the range of sample means, and average standard deviations
conditional on the means.) The middle column shows the sampling distribution and bootstrap
distributions for each sample. The right column shows bootstrapt distributions.
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Figure 10: Confidence interval one-sided miss probabilities for normal and exponential popula-
tions. 95% confidence interval, the ideal non-coverage is 2.5% on each side. The intervals are
described at the beginning of Section4.4. For the normal population non-coverage probabilities
are the same on both sides, and the reverse percentile interval is omitted (it has the same coverage
as the percentile interval). For the exponential population, curves with letters are non-coverage
probabilities on the right, where the interval is belowθ, and curves without letters correspond to
the left side.
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Original line
Bootstrap lines

Figure 11: Bootstrapping linear regression.Left: Linear regression linear model fits. At anyx,
they values from the bootstrap lines form a bootstrap distribution, that may be used for standard
errors or confidence intervals. Prediction intervals are wider, to capture individual observations.
Right: Fitting a linear relationship to data that are not linear; the bootstrap does not diagnose the
poor fit.
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